Fandom

BachiPedia

Representación gráfica de la circunferencia, parábola, elipse y la hipérbola

300páginas en
el wiki}}
Crear una página
Comentarios0 Share

¡Interferencia de bloqueo de anuncios detectada!


Wikia es un sitio libre de uso que hace dinero de la publicidad. Contamos con una experiencia modificada para los visitantes que utilizan el bloqueo de anuncios

Wikia no es accesible si se han hecho aún más modificaciones. Si se quita el bloqueador de anuncios personalizado, la página cargará como se esperaba.


Representación grafica de la circunferencia, parábola, elipse, e hipérbola

Representación grafica de la circunferencia, parábola, elipse e hipérbola.
Circunferencia:
La circunferencia es una línea curva, plana y cerrada, cuya definición más usual es: Una circunferencia es el conjunto de todos los puntos de un plano que equidistan de otro punto fijo y coplanario llamado centro.
A la distancia entre cualquiera de sus puntos y el centro se le denomina radio. El segmento de recta formado por dos radios alineados se llama diámetro. Es la mayor distancia posible entre dos puntos que pertenezcan a la circunferencia. La longitud del diámetro es el doble de la longitud del radio. La circunferencia sólo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.
Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como un polígono de infinitos lados, cuya apotema coincide con su radio.
La circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica.
Es una curva plana con infinitos ejes de simetría y sus aplicaciones son muy numerosas.
Parábola:
En matemática, la parábola es la sección cónica resultante de cortar un cono recto con un plano paralelo a su generatriz. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta (eje o directriz) y un punto fijo llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.
La parábola aparece en muchas ramas de las ciencias aplicadas, debido a que las gráficas de ecuaciones cuadráticas son parábolas. Por ejemplo, la trayectoria ideal del movimiento de los cuerpos bajo.

Spotlights de otros wikis

Wiki al azar